Detailed Comparison

Verdict Code vs Claude Code

Comprehensive feature-by-feature comparison (191 features)

Back to Summary

Detailed Feature Comparison

Complete comparison across all categories and features

FeatureVerdict CodeClaude CodeNotes
Core Architecture
Deployment ModelGateway-based architectureStandalone CLI toolClaude Code runs independently; Verdict Code requires Gateway (port 6120) for model access
Primary InterfacePython library + CLICommand-line interface (CLI)Verdict Code can be imported as Python package; Claude Code is CLI-only
Integration MethodDirect Python integrationSubprocess execution (via adapter)Verdict Code adapter uses direct Agent class calls (621 lines); Claude Code uses subprocess (353 lines)
Codebase Size~15,000+ lines across modulesProprietary (not visible)Verdict Code is fully open-source and extensible
Architecture TypeMicroservices-orientedMonolithic CLIVerdict Code integrates with Gateway, Telemetry, Memory, and Skills services
Configuration SourceAgentConfig dataclass + environmentCLI arguments + config filesVerdict Code uses Python dataclasses for type-safe configuration
Session ManagementSessionManager componentBuilt into CLIVerdict Code has explicit session models with persistence
State ManagementAgentState enum (IDLE, THINKING, TOOL_USE, ERROR, COMPLETE)Internal to CLIVerdict Code exposes explicit state transitions
ExtensibilityHighly extensible via custom commands, hooks, skillsLimited to provided featuresVerdict Code supports user/project-level custom commands
DependenciesPython + Gateway + optional servicesPython runtime + Anthropic SDKVerdict Code can function with degraded services
Agent Capabilities
Tool Use SupportConditional (requires capable model)Native Claude tool useVerdict Code requires models with tool support (e.g., claude-sonnet-4-5)
Multi-file EditingSupported via Edit toolSupported via Edit toolBoth use string replacement with validation
Background TasksSupported via Bash run_in_background parameterUnknown (not exposed in adapter)Verdict Code tracks background tasks with threading.Lock
Custom CommandsYes - user-level (~/.verdict/commands/) and project-level (.verdict/commands/)Not availableVerdict Code has full command discovery and loader system
Hooks SystemYes - pre/post execution hooksNot availableVerdict Code has HookRegistry and HookExecutor
MCP IntegrationYes - MCP client and registryUnknownVerdict Code supports Model Context Protocol servers
CheckpointingNot explicitly implementedUnknownVerdict Code has rewind/resume commands for state recovery
Vision SupportModel-dependent (configurable)Model-dependentBoth rely on underlying model capabilities
Task Tool (Sub-agents)Yes - spawns specialized sub-agents (EXPLORE, PLAN, BASH, GENERAL)Not availableVerdict Code SubAgent class with specialized prompts
Skill RoutingYes - skill-aware routing for optimal model selectionNot availableIntegrated with agents registry for cost optimization
Custom Agent TypesYes - SubagentConfig for custom agent definitionsNot availableSupports custom system prompts and tool access
ReAct Loop ImplementationExplicit generator yielding TurnResult objectsInternal to Claude CodeVerdict Code exposes turn-by-turn execution via Agent.chat()
Max Turns ConfigurationYes - DEFAULT_MAX_TURNS = 100, configurable via AgentConfigUnknownVerdict Code prevents infinite loops
Timeout HandlingYes - DEFAULT_TIMEOUT_MS = 120,000ms (2 minutes), configurableYesBoth support task-level timeouts
Streaming OutputYes - via callback system (on_text, on_tool_start, on_tool_end)Yes (via CLI)Verdict Code supports custom output formatters (text, JSON, stream-JSON)
Tool Support
Bash ToolYes - with persistent shell sessionYesVerdict Code tracks background tasks and supports timeout/description
Read ToolYes - with offset/limit parametersYesDefault reads 2000 lines, configurable
Write ToolYes - creates or overwrites filesYesVerdict Code requires Read before Edit (validation)
Edit ToolYes - exact string replacementYesVerdict Code tracks files_read set for validation
Glob ToolYes - pattern-based file searchYesBoth support **/*.py style patterns
Grep ToolYes - ripgrep-compatible searchYesVerdict Code supports output modes: content, files_with_matches, count
TodoWrite ToolYes - task tracking with statusYesVerdict Code has active_form for display
AskUserQuestion ToolYes - interactive user inputYesVerdict Code supports optional answers
Task Tool (Sub-agents)Yes - spawns specialized agentsNoUnique to Verdict Code
Tool Schema FormatAnthropic-compatible (via ToolSchema.to_anthropic_schema())Anthropic-compatibleBoth use standard Anthropic tool format
Tool RegistryToolRegistry class with get_schemas() and execute()InternalVerdict Code has extensible tool registration
Tool Execution TrackingYes - TelemetryCollector tracks tool callsYesVerdict Code records duration_ms, success, parameters
Custom ToolsCan extend ToolRegistryNot supportedVerdict Code architecture allows custom tool additions
Tool Timeout HandlingYes - per-tool timeout parameterYesDefault 2 minutes, max 10 minutes in Verdict Code
Tool Error RecoveryYes - ToolResult includes error contentYesBoth continue execution after tool failures
Background Tool ExecutionYes - Bash.run_in_background with TaskOutput retrievalUnknownVerdict Code uses threading.Lock for task tracking
Memory Management
Context CompactionYes - CompactionEngine with auto_compact flagUnknown (likely automatic)Triggers at 90% of max_context_tokens by default
Token Counting MethodOptional tiktoken or character ratio (1 token ~ 4 chars)Internal (exact from API)Verdict Code falls back to char ratio if tiktoken unavailable
Max Context TokensConfigurable (default 8192)Model-dependentVerdict Code supports models up to 200K tokens (Claude)
Context StatisticsYes - get_context_stats() returns usage, turn_count, token countsNot exposedVerdict Code provides visibility into context usage
Compaction StrategiesMultiple - OldestTurns, Summarization, ToolResultCompactionUnknownVerdict Code balances summary quality vs token savings
Auto-compact TriggerYes - compact_threshold (default 90%)UnknownVerdict Code automatically compacts when threshold exceeded
Compaction CallbackYes - on_auto_compact callback for UI updatesUnknownNotifies when compaction occurs
Agentic MemoryYes - AgenticMemoryClient with graceful degradationUnknownOptional memory service (port 6250) for context persistence
Memory Service TypesSAM (service), LOCAL (file-based), DISABLEDNot applicableVerdict Code falls back to stateless mode if unavailable
Context StorageYes - store_context() with session_id and tagsNot applicablePersists conversation context across sessions
Context RetrievalYes - retrieve_context() returns cached contextNot applicableEnables session resumption
Pattern LearningYes - store_pattern() and retrieve_pattern()Not availableAgents can learn and reuse patterns
Memory Graceful DegradationYes - returns MemoryResult.degraded=True if unavailableNot applicableLogs warnings but continues execution
Session PersistenceYes - session/manager.py with SessionManagerUnknownVerdict Code supports session resume via /resume command
Token Usage TrackingPartial - TelemetryCollector placeholder (TODO: extract from Gateway)Yes (via API)Verdict Code adapter notes token counting needs Gateway integration
Multi-Agent Coordination
Sub-agent SupportYes - SubAgent class extends AgentNoVerdict Code spawns specialized agents via Task tool
Agent TypesEXPLORE, PLAN, BASH, GENERALN/AEach type has specialized system prompt and tool access
Sub-agent ConfigurationSubagentConfig - custom system prompts, models, toolsN/ASupports custom agent definitions via agents registry
Parent Context InheritanceYes - SubAgent receives parent_context parameterN/ASub-agents see parent conversation history
Tool Access ControlYes - _get_allowed_tools() restricts tools by agent typeN/AEXPLORE: Read/Glob/Grep; BASH: Bash only; GENERAL: all tools
Model SelectionPer-agent model selectionSingle model per sessionSub-agent can use different model than parent
Skill-aware RoutingYes - integrated with skill routing for optimal model selectionNot availablePhase 6 feature for cost-optimized sub-agent execution
Agent RegistryYes - SubagentRegistry with Thoroughness levelsNot availableManages agent configurations and capabilities
Multi-agent OrchestrationManual via Task toolNot availableUser explicitly spawns sub-agents for specialized tasks
Agent CommunicationVia parent_context and tool resultsNot applicableSub-agents communicate through context passing
Agent Lifecycle ManagementExplicit initialization and cleanupN/ASubAgent inherits close() method from Agent
Parallel Agent ExecutionNo - sequential execution onlyNot availableSub-agents run one at a time within parent session
Agent TelemetryYes - on_retry, on_tool_start, on_tool_end callbacksUnknownTracks execution at agent level
Agent Error HandlingYes - try/except with state transition to ERRORYesBoth handle agent-level errors gracefully
Cost Tracking
Credit Cost TrackingYes - cost_credits field in AgentResultVia Anthropic APIVerdict Code Gateway returns cost information
Cost DisplayYes - /cost command shows session costsYes (via CLI)Verdict Code has cost command for real-time tracking
Multi-model Cost ManagementYes - Gateway supports multiple providers with unified creditsNo (Anthropic only)Verdict Code abstracts cost across providers
Credit Multiplier SystemYes - model_catalog table defines credit_multiplierNot applicableFree models (byok/, lan/, local/) have multiplier=0.0
Cost SSOTCloud Gateway (port 6123)Anthropic billingLocal Gateway (6120) proxies only, no billing
Real-time Cost UpdatesYes - via Gateway responsesUnknownTelemetry service (port 6122) may track costs
Cost EstimationVia pricing SSOT (cloud/config/verdict_master_pricing.json)Via Anthropic pricingVerdict Code never hardcodes prices
Budget LimitsYes - max_cost_credits in BenchmarkTaskVia Anthropic account limitsCabf enforces per-task cost limits
Cost ReportingVia Verdict reports and CLI commandsVia Anthropic dashboardVerdict Code provides cost breakdown by model/tool
Free Model SupportYes - byok/, lan/, local/ prefixesNoLocal models like Ollama incur zero credit cost
Error Handling
Retry LogicYes - RetryConfig with exponential backoffBuilt into Claude SDKmax_retries=3, base_delay=1.0s, max_delay=60.0s
Retryable ErrorsGatewayConnectionError, GatewayTimeoutError, RateLimitErrorInternalVerdict Code distinguishes retryable vs non-retryable
Non-retryable ErrorsGatewayResponseError (4xx client errors)InternalFails immediately without retry
Rate Limit HandlingYes - RateLimitError with retry_after headerVia Anthropic SDKHonors Gateway's Retry-After header
Graceful ShutdownYes - ShutdownRequested exception with is_shutdown_requested() checksUnknownChecks before each turn and during retry delays
Error State TrackingYes - AgentState.ERROR with error messageYesBoth track error state explicitly
Error Recovery CountingYes - recovery_count in AgentResult and TelemetryCollectorUnknownTracks successful recoveries from errors
Error CallbacksYes - on_error callback for UI updatesUnknownNotifies listeners of errors
Exception Hierarchy7 specific exception typesProprietaryAgentError, GatewayConnectionError, GatewayTimeoutError, GatewayResponseError, RateLimitError, ModelNotFoundError, ShutdownRequested
Timeout HandlingYes - asyncio.wait_for() with task.timeout_secondsYesCabf enforces per-task timeout limits
HTTP Error HandlingExplicit status code handling (200, 404, 429, 4xx, 5xx)Via SDKVerdict Code parses Gateway error responses
JSON Parse ErrorsYes - GatewayResponseError for invalid JSONVia SDKReturns truncated response body for debugging
Connection Error HandlingYes - distinguishes ConnectError vs ConnectTimeout vs ReadTimeoutVia SDKProvides specific error messages
Memory Service DegradationYes - graceful degradation with MemoryResult.degraded=TrueN/AContinues execution if memory unavailable
Performance Metrics
Token Usage TrackingPartial - placeholder with TODO for Gateway integrationYes (exact from API)Verdict Code adapter needs token extraction from Gateway
Execution Time TrackingYes - start_time, end_time, execution_time in AgentResultYesBoth track wall-clock time
Tool Call MetricsYes - tool_calls list with duration_ms for each callYesVerdict Code tracks per-tool timing via TelemetryCollector
Success Rate TrackingVia Cabf - success_rates: Dict[str, float] in ComparisonReportVia CabfBoth support benchmark-level aggregation
Average Execution TimeVia Cabf - avg_execution_times: Dict[str, float]Via CabfAggregated across benchmark runs
Token EfficiencyVia Cabf - avg_tokens_per_task: Dict[str, float]Via CabfBoth track input/output tokens
Statistical AnalysisVia Cabf - statistically_significant, p_value, confidence_intervalVia CabfBoth support hypothesis testing
Performance ProfilingYes - verbose mode with DEBUG outputUnknownVerdict Code logs request/response snippets
Health ChecksYes - health_check() verifies Gateway, workspace, modelYes (via --version)Verdict Code checks HTTP connectivity to Gateway
Metrics ExportVia Cabf reports - JSON, Markdown, visualizationsVia Cabf reportsBoth support multiple output formats
Telemetry IntegrationYes - on_retry, on_tool_start, on_tool_end callbacksUnknownVerdict Code supports custom telemetry collectors
Developer Experience
Setup ComplexityMedium - requires Gateway stackLow (pip install claude)Verdict Code needs Gateway, optional services (Memory, Skills)
ConfigurationPython dataclasses + environment variablesCLI args + config fileVerdict Code uses AgentConfig for type-safe configuration
Documentation QualityIn-repo docs (SPECs, PRDs, howtos)Official Anthropic docsVerdict Code has extensive but scattered documentation
CLI UsabilityFunctional but less polishedPolished (Anthropic-designed)Verdict Code prioritizes flexibility over UX polish
Output FormatsText, JSON, stream-JSONText (CLI)Verdict Code supports machine-readable output formats
Interactive FeaturesYes - AskUserQuestion toolYes (native)Both support interactive user input
Session ResumptionYes - /resume command with session persistenceUnknownVerdict Code SessionManager loads saved sessions
Command DiscoveryYes - /help command with command registryBuilt-in helpVerdict Code has custom command loader
Custom CommandsYes - user and project-level commandsNot supportedVerdict Code discovers commands from ~/.verdict/commands/ and .verdict/commands/
IDE IntegrationVSCode extension (in repo) + IDE protocolVSCode extension (official)Verdict Code has ide/protocol.py and ide/bridge.py
Debugging SupportVerbose mode with DEBUG loggingVia CLI outputVerdict Code prints request/response snippets
Error MessagesTechnical but detailedUser-friendlyVerdict Code provides stack traces and Gateway error details
Learning CurveSteeper - requires understanding Gateway, servicesShallowVerdict Code is more complex but more powerful
Community SupportOpen-source repo (GitHub)Anthropic communityVerdict Code benefits from open-source contributions
Integration & Extensibility
Python APIYes - can import Agent class directlyNo (CLI only)Verdict Code supports library usage, not just CLI
Custom Tool DevelopmentCan extend ToolRegistryNot supportedVerdict Code architecture allows custom tools
Hook SystemYes - pre/post execution hooksNot availableVerdict Code has HookRegistry and HookExecutor
Custom CommandsYes - Python-based commands with argparseNot availableSupports command discovery and loading
MCP Server SupportYes - MCP client and registryUnknownVerdict Code integrates Model Context Protocol servers
Skills SystemYes - Skills Manager (5 microservices, 42 CLI commands)Not availablePhase 1-5 complete, production-ready
Service IntegrationGateway, Telemetry, Memory, Skills, RBACAnthropic API onlyVerdict Code integrates with microservices architecture
Model Provider SupportMulti-provider via Gateway (OpenAI, local, OpenRouter, etc.)Anthropic onlyVerdict Code abstracts provider differences
Database IntegrationYes - PostgreSQL (NeonDB), Neo4j, FAISSNot applicableVerdict Code supports multiple datastores
RBAC IntegrationYes - role-based access controlNot applicableVerdict Code has RBAC service
Web UI IntegrationYes - HMI (Human-Machine Interface)Not availableVerdict Code has services/webui/hmi_app.py
API Gateway IntegrationYes - Local (6120) and Cloud (6123) GatewaysNot applicableVerdict Code routes through Gateway for model access
Extensibility ModelOpen - add custom commands, hooks, tools, skillsClosed (Anthropic-controlled)Verdict Code designed for extensibility
Plugin ArchitectureYes - custom commands, MCP servers, skillsNot availableVerdict Code supports multiple extension mechanisms
Ecosystem
LicenseOpen-source (in Verdict repo)Commercial (Anthropic)Verdict Code is part of larger Verdict platform
Development ModelOpen-source with active developmentClosed-source (Anthropic)Verdict Code has frequent commits and feature additions
DependenciesPython + Gateway servicesAnthropic SDKVerdict Code has more dependencies but more capabilities
Testing Infrastructurepytest with unit and integration testsInternal (Anthropic)Verdict Code has test_concurrent_operations.py, test_services_integration.py, test_stress_tests.py
BenchmarkingYes - CABF (Coding Agent Benchmark Framework)Not standardizedVerdict Code has standardized benchmark suite
Model SupportMulti-model via Gateway (Claude, GPT, local, etc.)Claude models onlyVerdict Code supports any model in Gateway catalog
Documentation StyleIn-repo SPECs, PRDs, howtos, quickrefsOfficial docsVerdict Code has comprehensive but technical docs
Update MechanismVia git pullVia pip/claude CLIVerdict Code updates manually or via git
Community ContributionsAccepted via GitHub PRsNot acceptedVerdict Code benefits from open-source community
Commercial SupportCommunity/self-supportedAnthropic supportVerdict Code relies on community for support

About This Comparison

This comparison is based on architectural analysis and feature comparison from the research documentCOMPARISON_Claude_Code_Vs_Verdict_Code.md. For objective performance metrics, the CABF (Coding Agent Benchmark Framework) provides standardized benchmarks comparing actual task performance, token efficiency, and success rates across different agent frameworks using the same models.